Group Method of Data Handling Neural Networks (GMDH-NN) in predicting the unconfined compressive strength of two mine tailings matrices for potential use in sustainable road base construction in cold regions
Ali A. Mahmood, Maria Elektorowicz
Dans les comptes rendus d’articles de la conférence: GeoSaskatoon 2023: 76th Canadian Geotechnical ConferenceSession: Case Studies 2
Please include this code when submitting a data update: GEO2023_139
Retrouver cet article:
Les membres de la Société canadienne de géotechnique peuvent accéder à cet article, ainsi qu'à tous les autres articles de la Conférence Géotechnique Canadienne, dans le Espace membre. Les comptes rendus d'articles sont également disponibles dans de nombreuses bibliothèques.
Citer cet article:
Mahmood, Ali A., Elektorowicz, Maria (2023) Group Method of Data Handling Neural Networks (GMDH-NN) in predicting the unconfined compressive strength of two mine tailings matrices for potential use in sustainable road base construction in cold regions in GEO2023. Ottawa, Ontario: Canadian Geotechnical Society.
@inproceedings{Mahmood_GEO2023_139,
author = {{Mahmood, Ali A.}, {Elektorowicz, Maria}}
title = {Group Method of Data Handling Neural Networks (GMDH-NN) in predicting the unconfined compressive strength of two mine tailings matrices for potential use in sustainable road base construction in cold regions }
booktitle = {Proceedings of the 76th Canadian Geotechnical Conference}
year = {2023}
organization = {The Canadian Geotechnical Society},
address = {Ottawa, Canada} }
title = {Group Method of Data Handling Neural Networks (GMDH-NN) in predicting the unconfined compressive strength of two mine tailings matrices for potential use in sustainable road base construction in cold regions }
booktitle = {Proceedings of the 76th Canadian Geotechnical Conference}
year = {2023}
organization = {The Canadian Geotechnical Society},
address = {Ottawa, Canada} }
